首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   9篇
  国内免费   101篇
安全科学   22篇
废物处理   6篇
环保管理   33篇
综合类   182篇
基础理论   47篇
污染及防治   99篇
评价与监测   24篇
社会与环境   2篇
灾害及防治   2篇
  2023年   7篇
  2022年   21篇
  2021年   17篇
  2020年   20篇
  2019年   12篇
  2018年   10篇
  2017年   15篇
  2016年   13篇
  2015年   14篇
  2014年   7篇
  2013年   20篇
  2012年   18篇
  2011年   35篇
  2010年   14篇
  2009年   18篇
  2008年   26篇
  2007年   27篇
  2006年   21篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有417条查询结果,搜索用时 875 毫秒
1.
An assessment of the pollution status of River Illo, located within River Owo catchments area in Ota, Ogun State, Nigeria, was carried out. The River’s response to deoxygenation due to BOD loading from an abattoir and its dissolved oxygen (DO) level was predicted using the modified Streeter-Phelps model. The average concentrations of measured parameters at the sampling stations include: 2.24 mg/l of DO, 312.85 mg/l of BOD, 782.86 mg/l of chemical oxygen demand, and 620.76 g/l of total solids. The DO model for River Illo showed a positive correlation between measured and calculated DO, while the dissolved oxygen curve gave a double spoon shape of two major segments with distinct zones of degradation, decomposition, and recovery. The self-purification factor (f) for both segments ranged between 0.8 and 1.1 depicting River Illo as a slow moving or sluggish river. The above results revealed slow reaeration of the water body while full recovery from pollution was difficult. The treatment of River Illo before usage is very essential to ensure public health safety of users from waterborne diseases.  相似文献   
2.
The performance of Ce-OMS-2 catalysts was improved by tuning the fill percentage in the hydrothermal synthesis process to increase the oxygen vacancy density. The Ce-OMS-2 samples were prepared with different fill percentages by means of a hydrothermal approach (i.e. 80%, 70%, 50% and 30%). Ce-OMS-2 with 80% fill percentage (Ce-OMS-2-80%) showed ozone conversion of 97%, and a lifetime experiment carried out for more than 20?days showed that the activity of the catalyst still remained satisfactorily high (91%). For Ce-OMS-2-80%, Mn ions in the framework as well as K ions in the tunnel sites were replaced by Ce4+, while for the others only Mn ions were replaced. O2-TPD and H2-TPR measurements proved that the Ce-OMS-2-80% catalyst possessed the greatest number of mobile surface oxygen species. XPS and XAFS showed that increasing the fill percentage can reduce the AOS of Mn and augment the amount of oxygen vacancies. The active sites, which accelerate the elimination of O3, can be enriched by increasing the oxygen vacancies. These findings indicate that increasing ozone removal can be achieved by tuning the fill percentage in the hydrothermal synthesis process.  相似文献   
3.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
4.
This research aimed to evaluate the alga Scenedesmus obliquus toxicity induced by textiledyeing effluents(TDE).The toxicity indicator of TDE in alga at the physiological(algal growyth),biochemical(chlorophyll-a(Chl-a) synthesis and superoxide dismutase(SOD) activity) and structural(cell membrane integrity) level were investigated.Then we further study the relationship among toxicity indicators at physiological and biochemical level,and supplemented by research on algal biomacromolecules.According to the analysis of various endpoints of the alga,the general sensitivity sequence of toxicity endpoints of Scenedesmus obliquus was:SOD activity Chl-a synthesis algal growth.The stimulation rate of SOD activity increased from day 3(57.25%~83.02%) to day 6(57.25%~103.81%),and then decreased on day 15(-4.23%~-32.96%),which indicated that the antioxidant balance system of the algal cells was destroyed.The rate of Chl-a synthesis inhibition increased gradually,reaching19.70%~79.39% on day 15,while the rate of growth inhibition increased from day 3(-12.90%~10.16%) to day 15(-21.27%~72.46%).Moreover,the algal growth inhibition rate was positively correlated with the inhibition rate of SOD activity or Chl-a synthesis,with the correlation coefficients were 0.6713 and 0.5217,respectively.Algal cells would be stimulating to produce excessive reactive oxygen species,which would cause peroxidation in the cells,thereby destroying chloroplasts,inhibiting chlorophyll synthesis and reducing photosynthesis.With increasing exposure time,irreversible damage to algae can lead to death.This study is expected to enhance our understanding of the ecological risks through algal tests caused by TDE.  相似文献   
5.
Molecular level characterization of dissolved organic sulfur (DOS) by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) is necessary for further understanding of the role of DOS in the environment. Here, ESI spray solvent, a key parameter for ion production during ESI process, was investigated for its effect on the molecular characterization of DOS by ESI-FTICR MS. 100% MeOH as spray solvent was found for the first time to remarkably enhance the ionization efficiency of the majority of CHOS-molecules in NOM, which facilitated a total of 1473 CHOS-molecular formulas with one sulfur atom to be detected. The number of CHOS-molecular formulas obtained using 100%MeOH as spray solvent increased notably over 740 in comparison with those using 50% MeOH aqueous solution (731) or 50% ACN aqueous solution (653). Moreover, due to the enhancement of ionization efficiency of DOS during ESI processes, the tandem mass spectra of the NOM CHOS-molecules could be easily obtained using 100% MeOH as spray solvent, which were hardly obtained using 50% MeOH aqueous solution as spray solvent. The results of the tandem mass spectra suggested the first discovery of organosulfates or sulfonic acids in Suwannee River NOM sample. A simple method based on 100% MeOH as ESI spray solvent for advanced molecular characterization of DOS by ESI-FTICR MS was proposed and applied, and the results revealed more molecular information of DOS in sea DOM samples.  相似文献   
6.
用微生物传感器快速法和稀释接种法对地表水和污水处理厂出水中的生化需氧量(BOD)进行了测定,用数理统计的方法对两种方法测定的结果进行了比较。  相似文献   
7.
强化混凝去除黄浦江水有机物的试验研究   总被引:11,自引:0,他引:11  
强化混凝去除有机物的效果与水源的分子量分布特性有着密切的关系.由于黄浦江水中低分子量的溶解性有机物占多数,因此,强化混凝处理有机物效果有限.对于<1k分子量区间的有机物.增加混凝剂投量可有效去除紫外吸光值(UV254),但去除溶解性有机碳(DOC)的效果很差.尽管增加混凝剂投量和降低pH都能有效地去除有机物,但决定强化混凝效果的主要因素是pH,去除黄浦江水有机物的最佳pH范围为6~5.  相似文献   
8.
Accurate quantification of dissolved organic nitrogen (DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species (DIN) from total dissolved nitrogen (TDN). Size exclusion chromatography coupled with an organic nitrogen detector (SEC-OND) has been developed as a direct method for quantification and characterization of DON. However, the applications of SEC-OND method still subject to poor separations between DON and DIN species and unsatisfied N recoveries of macromolecules. In this study, we packed a series of SEC columns with different lengths and resin materials for separation of different N species and designed an independent vacuum ultraviolet (VUV) oxidation device for complete oxidation converting N species to nitrate. To guarantee sufficient N recoveries, the operation conditions were optimized as oxidation time ≥ 30 min, injection mass (sample concentration × injection volume) < 1000 µL × mg-N/L for macromolecular proteins, and neutral pH mobile eluent. The dissolved O2 concentration in SEC mobile phase determined the upper limit of VUV oxidation at a specific oxidation time. Compared to conventional HW50S column (20 × 250 mm), HW40S column (20 × 350 mm) with mobile phase comprising of 1.5 g/L Na2HPO4·2H2O + 2.5 g/L KH2PO4 (pH = 6.85) could achieve a better separation of DON, nitrite, nitrate, and ammonia. When applied to river water, lake water, wastewater effluent, groundwater, and landfill leachate, the SEC-OND method could quantify DON as well as DIN species accurately and conveniently even the DIN/TDN ratio reached 0.98.  相似文献   
9.
水中化学耗氧量的快速测定法   总被引:3,自引:0,他引:3  
利用烘箱法测定水中的化学耗氧量是国内外在微量分析测定方法上较为先进的分析,优点是仪器、设备简便、操作简单、分析快速、节省大量化学试剂,可以大批量地进行试验.实验中不加入硫酸汞试剂,避免或减少了汞污染.方法的空白值较好,提高了实验的精密度和准确度,是一种易推广的方法  相似文献   
10.
利用活性污泥数学模型预测污水生物处理系统,首先必须确定其参数和水质组分。采用间歇活性污泥法和呼吸计量法对活性污泥数学模型中异养菌产率系数γ_H进行测定研究。结果表明,间歇活性污泥法测定结果重现性较差,试验控制条件比较严格;呼吸计量法测定结果准确性较高,重现性良好,因而,呼吸计量法是比较可行的γ_H测定方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号